Supporting Information

Rational Design of Chiral Nanoscale Adamantanoids

Manuela Schweiger, Russell S. Seidel, Marion Schmitz, and Peter J. Stang*

Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, USA stang@chemistry.utah.edu

6 $[2,2-Bis(4-(trans-Pt(PEt_3)_2(OTf))phenyl)propane] + 4 [2-(R)-phenyl[tris(4-pyridyl)]$

methyl]butyrate] (6). An nmr tube containing 14.3 mg (0.0105 mmol) of **1** dissolved in 1 ml deuterated methylene chloride had added to it a solution of 2.7 mg (0.0066 mmol) of **2** in 0.5 ml deuterated methylene chloride. This reaction was done via titration of the solution of **1** with the solution of **2** under NMR monitoring. Yield: 100% (*via* nmr). MP: 220°C (dec.).

¹H NMR (CD₂Cl₂, 300 MHz) δ 8.68 (bs, 24H, H_{*apyr*}), 7.74 (bs, 24H, H_{*βpyr*}), 7.37 (bs, 20H, C(O)-CH-C₆*H₅*), 7.13 (bs, 24H, Pt-Ph-H_{*a*}), 6.86 (bs, 24H, Pt-Ph-H_{*m*}), 4.07 (m, 4H, C(O)-C*H*), 2.12 (m, 4H, C(O)-CH(Ph)- *CH*H), 1.87 (m, 4H, C(O)-CH(Ph)-CH*H*), 1.60 (s, 36H, Pt-Ph-C-*CH*₃), 1.26 (m, 144H, P-C*H*₂), 1.04 (m, 216H, P-CH₂-C*H*₃), 0.86 (m, 12H, C(O)-CH(Ph)-CH₂-C*H*₃); ³¹P{¹H} NMR (CD₂Cl₂, 121 MHz) δ 14.3 (s, ¹⁹⁵Pt satellites, *J*Pt-P = 2670 Hz); ¹⁹F NMR (CD₂Cl₂) δ -78.6; ¹³C{¹H} NMR (CD₂Cl₂) δ 172.4(s, CO_{*ester*}), 153.1 (s, C_{*a*}), 147.4 (s, C_{*ipso-pyr*}), 138.1 (C_{*ipso-phenyl(ester*)), 135.5 (s, Pt-C_{*p*}), 129.5, 128.9, 128.5 (C_{*phenyl(ester*)}), 127.4 (s, Pt-C_{*o*}), 126.8 (s, Pt-C_{*ipso*), 123.7 (s, C_{*β*}), 119.5 (s, Pt-C_{*m*}), 113.0 (q, *J*_{C-F} = 332 Hz, OTf), 88.1 (s, *C*(py)₃), 42.1 (s, Pt-Ph-C), 30.2 (s, Pt-Ph-C-CH₃), 25.7 (s, CH₂), 12.9 (bt, P-CH₂), 12.1 (s, CH₃), 8.0 (s, P-CH₂CH₃); Anal. Calcd for C₃₅₀H₅₃₆F₃₆N₁₂O₄₄P₂₄Pt₁₂S₁₂: C, 43.03; H, 5.53; N, 1.72; S, 3.94. Found: C, 41.92; H, 5.39; N, 1.82; S, 3.79.}} 6 [4,4'-Bis(*trans*-Pt(PEt₃)₂(OTf))benzophenone] + 4 [2-(R)-phenyl[tris(4-pyridyl)methyl] butyrate] (7). 5.3 mg (0.0040 mmol) of 4,4'-Bis(*trans*-Pt(PEt₃)₂(OTf))benzophenone were dissolved in 0.55 ml CD₂Cl₂. By titration with a solution of 1.1 mg (0.0027 mmol) of 2-(R)phenyl[tris(4'-pyridyl)methyl]butyrate (2) in 0.45 ml CD₂Cl₂, adamantanoid 7 forms instantaneously in 100 % yield according to NMR-data. MP: 230°C (dec.).

¹H NMR (CD₂Cl₂, 300 MHz) δ 8.75 (bs, 24H, H_{*appr*}), 7.82 (bs, 24H, H_{*βpyr*}), 7.51 (bs, 24H, Pt-Ph-H_{*a*}), 7.48 (bs, 24H, Pt-Ph-H_{*m*}), 7.39 (bs, 20H, C(O)-CH-C₆H₅), 4.08 (m, 4H, C(O)-CH), 2.16 (m, 4H, C(O)-CH(Ph)- CHH), 1.88 (m, 4H, C(O)-CH(Ph)- CHH), 1.34 (m, 144H, P-CH₂), 1.11 (m, 216H, P-CH₂-CH₃), 0.89 (m, 12H, C(O)-CH(Ph)-CH₂-CH₃); ³¹P{¹H} NMR (CD₂Cl₂, 121 MHz) δ 15.6 (s, ¹⁹⁵Pt satellites, *J*Pt-P = 2643 Hz); ¹⁹F NMR (CD₂Cl₂) δ -78.6; ¹³C{¹H} NMR (CD₂Cl₂) δ 197.3 (s, CO_{*keton*}), 173.1(s, CO_{*ester*}), 153.3 (s, C_{*a*}), 151.3 (s, C_{*ipso-pyr*}), 141.7 (s, Pt-C_{*m*}), 138.2 (C_{*ipso-phenyl(ester*)), 136.6 (s, Pt-C_{*a*}), 134.0 (s, Pt-C_{*p*}), 130.0 (s, Pt-C_{*ipso*}), 129.6, 129.0, 128.6 (C_{*phenyl(ester*)), 127.3 (s, C_{*β*}), 121.7 (q, *J*_{C-F}=322 Hz, OTf), 86.3 (s, C(py)₃), 25.9 (s, CH₂), 13.0 (bt, P-CH₂), 12.2 (s, CH₃), 8.0 (s, P-CH₂CH₃) Anal. Calcd for C₃₃₈H₅₀₀F₃₆N₁₂O₅₀P₂₄Pt₁₂S₁₂: C, 41.91; H, 5.21; N, 1.74; S, 3.96. Found: C, 41.11; H, 5.06; N, 1.84; S, 3.74.}}

adamantanoid	Fragment	m/z	m/z	Charge
6		(Calculated)	(Observed)	
	2 1 + 2 2 + 3 OTf	3378	3380	+1
	4 1 + 4 2 + 6 OTf	3378	3380	+2
	4 1 + 3 2 + 6 OTf	3173	3176	+2
	(M - 3 OTf)	3105	3107	+3
	5 1 + 4 2 + 7 OTf	2654	2655	+3
	3 1 + 2 2 + 4 OTf	2292	2293	+2
	(M - 4 O Tf)	2292	2293	+4
	4 1 + 3 2 + 5 OTf	2066	2067	+3
	5 1 + 4 2 + 6 OTf	1953	1954	+4
	(M-5 O Tf)	1804	1805	+5
	n 1 + n 2 + n OTf	1615	1616	+n
	4 1 + 4 2 + 3 OTf	1262	1264	+5
	1 1 + 0 2 + 1 OTf	1205	1206	+1
	1 1 + 2 2 + 0 OTf	937	938	+2

 Table 1: Electrospray Ionization Mass Spectrometric Data for Adamantanoids 6 and 7.

(M: intact cage 6; ditopic linker 1; tritopic linker 2; OTf: triflate counterion)

adamantanoid	Fragment	m/z	m/z	Charge
7		(Calculated)	(Observed)	
	4 3 + 3 2 + 6 OTf	3145	3147	+2
	$(M - 3 \text{ OTf})^{3+}$	3077	3079	+3
	4 3 + 2 2 + 6 OTf	2943	2943	+2
	5 3 + 4 2 + 7 OTf	2632	2633	+3
	$(M - 4 \text{ OTf})^{4+}$	2270	2272	+4
	3 3 + 2 2 + 4 OTf	2270	2272	+2
	4 3 + 3 2 + 5 OTf	2048	2049	+3
	5 3 + 4 2 + 6 OTf	1936	1937	+4
	$(M - 5 \text{ OTf})^{5+}$	1787	1788	+5
	1 3 + 1 2 + 1 OTf	1602	1601	+1
	3 3 + 4 2 + 2 OTf	1265	1266	+4
	1 3 + 1 OTf	1191	1192	+1
	2 3 + 3 2 + 1 OTf	1154	1155	+3
	1 3 + 2 2	930	931	+2

(M: intact cage 7; ditopic linker 3; tritopic linker 2; OTf: triflate counterion)

Figure S1: ${}^{1}H$ NMR and ${}^{31}P$ NMR { ${}^{1}H$ } of adamantanoids 6 (A, B) and 7 (C, D).

